Content
Module 1: How Google Does Machine Learning
- Develop a data strategy around machine learning.
- Examine use cases that are then reimagined through an ML lens.
- Recognize biases that ML can amplify.
- Leverage Google Cloud Platform tools and environment to do ML.
- Learn from Google’s experience to avoid common pitfalls.
- Carry out data science tasks in online collaborative notebooks.
- Invoke pre-trained ML models from Cloud Datalab.
Module 2: Launching into Machine Learning
- Identify why deep learning is currently popular.
- Optimize and evaluate models using loss functions and performance metrics.
- Mitigate common problems that arise in machine learning.
- Create repeatable and scalable training, evaluation, and test datasets.
Module 3:Intro to TensorFlow
- Create machine learning models in TensorFlow.
- Use the TensorFlow libraries to solve numerical problems.
- Troubleshoot and debug common TensorFlow code pitfalls.
- Use tf_estimator to create, train, and evaluate an ML model.
- Train, deploy, and productionalize ML models at scale with Cloud ML Engine.
Module 4: Feature Engineering
- Turn raw data into feature vectors.
- Preprocess and create new feature pipelines with Cloud Dataflow.
- Create and implement feature crosses and assess their impact.
- Write TensorFlow Transform code for feature engineering.
Module 5: The Art and Science of ML
- Optimize model performance with hyperparameter tuning.
- Experiment with neural networks and fine-tune performance.
- Enhance ML model features with embedding layers.
- Create reusable custom model code with the Custom Estimator.